Duplicate Breusch-Godfrey Test Logic in SAS Autoreg Procedure
This article is originally published at https://statcompute.wordpress.com
Since it appears that SAS and R might give slightly different B-G test results, I spent a couple hours on duplicating the logic of B-G test implemented in SAS Autoreg Procedure. The written SAS macro should give my team more flexibility to perform B-G test in CCAR 2017 model developments in cases that models will not be estimated with Autoreg Procedure.
B-G Test with Proc Autoreg
data one; do i = 1 to 100; x1 = uniform(1); x2 = uniform(2); r = normal(3) * 0.5; y = 10 + 8 * x1 + 6 * x2 + r; output; end; run; proc autoreg data = one; model y = x1 x2 / godfrey = 4; run; quit; /* Godfrey's Serial Correlation Test Alternative LM Pr > LM AR(1) 0.2976 0.5854 AR(2) 1.5919 0.4512 AR(3) 1.7168 0.6332 AR(4) 1.7839 0.7754 */
Home-brew SAS Macro
%macro bgtest(data = , r = , x = , order = 4); options nocenter nonumber nodate mprint mlogic symbolgen formchar = "|----|+|---+=|-/\<>*"; proc sql noprint; select mean(&r) format = 12.8 into :m from &data; quit; data _1 (drop = _i); set &data (keep = &r &x); %do i = 1 %to ℴ _lag&i._&r = lag&i.(&r); %end; _i + 1; _index = _i - ℴ array _l _lag:; do over _l; if _l = . then _l = &m; end; run; proc reg data = _last_ noprint; model &r = &x _lag:; output out = _2 p = rhat; run; proc sql noprint; create table _result as select sum((rhat - &m) ** 2) / sum((&r - &m) ** 2) as _r2, (select count(*) from _2) * calculated _r2 as _chisq, 1 - probchi(calculated _chisq, &order.) as _p_chisq, &order as _df from _2; quit; title; proc report data = _last_ spacing = 1 headline nowindows split = "*"; column(" * BREUSCH-GODFREY TEST FOR SERIAL CORRELATION * H0: THERE IS NO SERIAL CORRELATION OF ANY ORDER UP TO &order * " _chisq _df _p_chisq); define _chisq / "CHI-SQUARE" width = 20 format = 15.10; define _df / "DF" width = 10; define _p_chisq / "P-VALUE" width = 20 format = 15.10; run; %mend bgtest; proc reg data = one noprint; model y = x1 x2; output out = two r = r2; run; quit; data _null_; do i = 1 to 4; call execute('%bgtest(data = two, r = r2, x = x1 x2, order = '||put(i, 2.)||');'); end; run; /* BREUSCH-GODFREY TEST FOR SERIAL CORRELATION H0: THERE IS NO SERIAL CORRELATION OF ANY ORDER UP TO 1 CHI-SQUARE DF P-VALUE ------------------------------------------------------- 0.2976458421 1 0.5853620441 BREUSCH-GODFREY TEST FOR SERIAL CORRELATION H0: THERE IS NO SERIAL CORRELATION OF ANY ORDER UP TO 2 CHI-SQUARE DF P-VALUE ------------------------------------------------------- 1.5918785412 2 0.4511572771 BREUSCH-GODFREY TEST FOR SERIAL CORRELATION H0: THERE IS NO SERIAL CORRELATION OF ANY ORDER UP TO 3 CHI-SQUARE DF P-VALUE ------------------------------------------------------- 1.7167785901 3 0.6332099963 BREUSCH-GODFREY TEST FOR SERIAL CORRELATION H0: THERE IS NO SERIAL CORRELATION OF ANY ORDER UP TO 4 CHI-SQUARE DF P-VALUE ------------------------------------------------------- 1.7839349922 4 0.7754201982 */
Thanks for visiting r-craft.org
This article is originally published at https://statcompute.wordpress.com
Please visit source website for post related comments.