Customer segmentation – LifeCycle Grids, CLV and CAC with R
This article is originally published at https://www.analyzecore.com
We will study how we can analyze and visualize other valuable metrics like customer acquisition cost and customer lifetime value using LifeCycle Grids approachWe studied a very powerful approach for customer segmentation in the previous post, which is based on the customer’s lifecycle. We used two metrics: frequency and recency. It is also possible and very helpful to add monetary value to our segmentation.
If you have customer acquisition cost (CAC) and customer lifetime value (CLV), you can easily add these data to the calculations.
We will create the same data sample as in the previous post, but with two added data frames:
- cac, our expenses for each customer acquisition,
- gr.margin, gross margin of each product.
click to expand R code
# loading libraries library(dplyr) library(reshape2) library(ggplot2) # creating data sample set.seed(10) data <- data.frame(orderId=sample(c(1:1000), 5000, replace=TRUE), product=sample(c('NULL','a','b','c'), 5000, replace=TRUE, prob=c(0.15, 0.65, 0.3, 0.15))) order <- data.frame(orderId=c(1:1000), clientId=sample(c(1:300), 1000, replace=TRUE)) gender <- data.frame(clientId=c(1:300), gender=sample(c('male', 'female'), 300, replace=TRUE, prob=c(0.40, 0.60))) date <- data.frame(orderId=c(1:1000), orderdate=sample((1:100), 1000, replace=TRUE)) orders <- merge(data, order, by='orderId') orders <- merge(orders, gender, by='clientId') orders <- merge(orders, date, by='orderId') orders <- orders[orders$product!='NULL', ] orders$orderdate <- as.Date(orders$orderdate, origin="2012-01-01") # creating data frames with CAC and Gross margin cac <- data.frame(clientId=unique(orders$clientId), cac=sample(c(10:15), 289, replace=TRUE)) gr.margin <- data.frame(product=c('a', 'b', 'c'), grossmarg=c(1, 2, 3)) rm(data, date, order, gender)
Next, we will calculate CLV to date (actual amount that we earned) using gross margin values and orders of the products. We will use the following code:
click to expand R code
# reporting date today <- as.Date('2012-04-11', format='%Y-%m-%d') # calculating customer lifetime value orders <- merge(orders, gr.margin, by='product') clv <- orders %>% group_by(clientId) %>% summarise(clv=sum(grossmarg)) %>% ungroup() # processing data orders <- dcast(orders, orderId + clientId + gender + orderdate ~ product, value.var='product', fun.aggregate=length) orders <- orders %>% group_by(clientId) %>% mutate(frequency=n(), recency=as.numeric(today-orderdate)) %>% filter(orderdate==max(orderdate)) %>% filter(orderId==max(orderId)) %>% ungroup() orders.segm <- orders %>% mutate(segm.freq=ifelse(between(frequency, 1, 1), '1', ifelse(between(frequency, 2, 2), '2', ifelse(between(frequency, 3, 3), '3', ifelse(between(frequency, 4, 4), '4', ifelse(between(frequency, 5, 5), '5', '>5')))))) %>% mutate(segm.rec=ifelse(between(recency, 0, 6), '0-6 days', ifelse(between(recency, 7, 13), '7-13 days', ifelse(between(recency, 14, 19), '14-19 days', ifelse(between(recency, 20, 45), '20-45 days', ifelse(between(recency, 46, 80), '46-80 days', '>80 days')))))) %>% # creating last cart feature mutate(cart=paste(ifelse(a!=0, 'a', ''), ifelse(b!=0, 'b', ''), ifelse(c!=0, 'c', ''), sep='')) %>% arrange(clientId) # defining order of boundaries orders.segm$segm.freq <- factor(orders.segm$segm.freq, levels=c('>5', '5', '4', '3', '2', '1')) orders.segm$segm.rec <- factor(orders.segm$segm.rec, levels=c('>80 days', '46-80 days', '20-45 days', '14-19 days', '7-13 days', '0-6 days'))
Note: if you prefer to use potential/expected/predicted CLV or total CLV (sum of CLV to date and potential CLV) you can adapt this code or find the example in the next post.
In addition, we need to merge orders.segm with the CAC and CLV data, and combine the data with the segments. We will calculate total CAC and CLV to date, as well as their average with the following code:
click to expand R code
orders.segm <- merge(orders.segm, cac, by='clientId') orders.segm <- merge(orders.segm, clv, by='clientId') lcg.clv <- orders.segm %>% group_by(segm.rec, segm.freq) %>% summarise(quantity=n(), # calculating cumulative CAC and CLV cac=sum(cac), clv=sum(clv)) %>% ungroup() %>% # calculating CAC and CLV per client mutate(cac1=round(cac/quantity, 2), clv1=round(clv/quantity, 2)) lcg.clv <- melt(lcg.clv, id.vars=c('segm.rec', 'segm.freq', 'quantity'))
Ok, let’s plot two charts: the first one representing the totals and the second one representing the averages:
click to expand R code
ggplot(lcg.clv[lcg.clv$variable %in% c('clv', 'cac'), ], aes(x=variable, y=value, fill=variable)) + theme_bw() + theme(panel.grid = element_blank())+ geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) + geom_text(aes(y=value, label=value), size=4) + facet_grid(segm.freq ~ segm.rec) + ggtitle("LifeCycle Grids - CLV vs CAC (total)") ggplot(lcg.clv[lcg.clv$variable %in% c('clv1', 'cac1'), ], aes(x=variable, y=value, fill=variable)) + theme_bw() + theme(panel.grid = element_blank())+ geom_bar(stat='identity', alpha=0.6, aes(width=quantity/max(quantity))) + geom_text(aes(y=value, label=value), size=4) + facet_grid(segm.freq ~ segm.rec) + ggtitle("LifeCycle Grids - CLV vs CAC (average)")
You can find in the grids that the width of bars depends on the number of customers. I think these visualizations are very helpful. You can see the difference between CLV to date and CAC and make decisions about on paid campaigns or initiatives like:
- does it make sense to spend extra money to reactivate some customers (e.g. those who are in the “1 order / >80 days“ cell or those who are in the “>5 orders / 20-45 days“ cell)?,
- how much money is appropriate to spend?,
- and so on.
Therefore, we have got a very interesting visualization. We can analyze and make decisions based on the three customer lifecycle metrics: recency, frequency and monetary value.
Thank you for reading this!
The post Customer segmentation – LifeCycle Grids, CLV and CAC with R appeared first on AnalyzeCore by Sergey Bryl' - data is beautiful, data is a story.
Thanks for visiting r-craft.org
This article is originally published at https://www.analyzecore.com
Please visit source website for post related comments.